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Abstract

A sender persuades a receiver to accept a project by disclosing information regarding

a payoff-relevant state. The receiver has private information about the state, referred

to as his type. We show that the sender-optimal mechanism takes the form of nested

intervals: each type accepts on an interval of states and a more optimistic type’s in-

terval contains a less optimistic type’s interval. This nested-interval structure offers

a simple algorithm to solve for the optimal disclosure and connects our problem to

monopoly screening problems. The mechanism is optimal even if the sender conditions

the disclosure mechanism on the receiver’s reported type.
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1 Introduction

A theorist recommends a candidate to her department chair, who decides whether or not to

hire that candidate. The chair’s payoff from hiring the candidate depends on the quality of

the candidate. The theorist knows the true quality and can design a disclosure mechanism

revealing more information about the candidate’s quality to the chair. This is the Bayesian

persuasion problem analyzed by Rayo and Segal (2010) and Kamenica and Gentzkow (2011).

Frequently, besides the information disclosed by the theorist, the chair has access to

various external sources of information regarding the underlying quality. He can read the

job market paper by himself or call and consult his friends from other institutions. What

he learns from these external sources will remain the chair’s private information. A chair

who has received positive feedback is more optimistic about the quality and more willing to

hire than a chair who has received some worrisome feedback. How will the theorist structure

her recommendation to best persuade a chair with an unknown level of optimism? Under

what conditions will she actively campaign for the candidate to be hired, and under what

conditions will she step back and let the chair resort to his own private information and

decide by himself?

This phenomenon of trying to persuade a privately informed receiver is pervasive in

economic and political life. For instance, a lobbyist tries to sway a legislator’s position on

an issue. The legislator himself has access to various information sources. He may also have

gained knowledge from working on similar issues in the past. In a different example, a media

outlet tries to promote a candidate or an agenda. The audience acquires information about

the candidate/agenda from various channels other than this media outlet, or they may also

have first-hand experience which has a significant influence on their position, unbeknownst

to the media outlet. In this paper we study how to design a disclosure mechanism when the

receiver has diverse opinions about the issue/candidate/agenda.

Environment. Following Rayo and Segal (2010) and Kamenica and Gentzkow (2011), we

consider an environment with two players: Sender (she) and Receiver (he). Sender promotes

a project to Receiver, who decides whether to accept or reject it. Receiver’s payoff from

accepting increases with the project’s quality, i.e., the state. His payoff is normalized to

zero if he rejects. Therefore, there is a threshold state such that Receiver benefits from the

project if the state is above the threshold, and loses otherwise. Sender, on the other hand,

simply wants the project to be accepted.

Receiver does not know the state but has access to an external information source. The
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information from this source is Receiver’s type. We assume that the higher the state, the

more likely it is that Receiver has a higher rather than a lower type. Therefore, a higher type

is more optimistic than a lower type that the state favors an acceptance decision. Sender

designs a disclosure mechanism to reveal more information about the state and can commit

to this mechanism. Receiver updates his belief based on his private information and Sender’s

signal. Then, he takes an action: to accept or to reject. Following Kolotilin et al. (2016),

we call such an environment “public persuasion”: different types observe the same signal.

We later address the environment of “private persuasion,” in which Sender asks Receiver to

report his type and then randomizes a recommendation from a distribution that depends on

the state and the type reported.

Main results. To illustrate the structure and the intuition of the optimal mechanism,

we consider first the case in which Receiver has two possible types: high or low. Sender

could design a pooling mechanism under which both types always receive the same recom-

mendation. Sender could also design a separating mechanism under which, with positive

probability, only the high type (who is more optimistic) accepts. When Receiver’s external

information is sufficiently informative, it is much easier to persuade the high type than the

low type, so a separating mechanism delivers a higher payoff.

Under a separating mechanism, the high type will accept whenever the low type accepts.

In addition, the high type will accept in some other states, of which some are good for

Receiver and some are bad. Our main result states that the optimal separating mechanism

takes a nested-interval structure. This entails two key properties. First, the set of states

in which each type accepts is an interval. Second, the high type’s interval contains the low

type’s; as a result, Sender recommends that only the high type accept when the state is,

from Receiver’s perspective, either quite good or quite bad.

The interval structure translates to an intuitive rule of optimal disclosure. Sender pushes

for the project to be accepted in the intermediate states where the two types’ beliefs do not

differ much. When the state is quite good or quite bad, the two types’ beliefs differ signif-

icantly. Sender pools these states, and lets Receiver resort to his own private information

and decide by himself. One important implication is that, when a lobbyist faces a legislator

or when the media addresses an audience with diverse viewpoints, both the lobbyist and the

media will “spend their capital” on intermediate states and push for their preferred action.

They pool relatively extreme states under which the legislator or the audience make use of

their own information.
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More generally, in an environment with more than two types we show that the optimal

disclosure mechanism has the following structure: (i) each type is endowed with an interval

of states under which this type accepts; (ii) a lower type’s acceptance interval is a subset of

a higher type’s acceptance interval. This result relies on two features of our environment: a

common prior belief between Sender and Receiver and the fact that higher types are more

optimistic about the state than lower types.

The interval structure gives us a simple algorithm to find the optimal disclosure: we

only need to characterize the upper and lower bound of each type’s interval. Moreover, the

interval structure offers a natural connection between (i) Sender’s persuasion problem and

(ii) the monopoly screening problem analyzed in Mussa and Rosen (1978). We can interpret

Receiver’s utility from accepting on an interval of positive-payoff states as a buyer’s utility

from some quality level. Receiver’s disutility from accepting on an interval of negative-

payoff states is the buyer’s disutility from some amount of payment. Receiver’s level of

optimism (a.k.a., their type) corresponds to how much the buyer values quality. Once we

impose the interval structure, Sender’s problem in our setup has the same structure as the

monopoly screening problem. In addition to the conceptual advantage of unifying these

two seemingly different problems, this reduction enables us to use the techniques from the

screening problems to solve for the optimal mechanism.

Our second main result states that this optimal mechanism under public persuasion is

also optimal under private persuasion. Under private persuasion, Sender draws the rec-

ommendation conditional on the state and the reported type. We show that Sender does

not benefit from eliciting Receiver’s private information. The key observation is that, while

the incentive-compatible constraints pertaining to private persuasion are in general weaker

than those of public persuasion, for interval-structure mechanisms they are essentially the

same. For this reason, unlike the environment in Kolotilin et al. (2016), in our environ-

ment the equivalence between private and public persuasion holds only for Sender’s optimal

mechanism, with its interval structure.

Intuition for the proof. The proof is sufficiently intuitive that we can write the core

argument here. We first argue that Sender’s payoff is maximized when each type accepts

in states that are close to the threshold state. We divide the states into “positive states”

and “negative states” depending on the sign of Receiver’s payoff from accepting. The set of

states on which Sender recommends that each type accept includes some positive and some

negative states. For any given utility to Receiver from positive states (and similarly for any
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given disutility from negative states), Sender’s payoff is maximized when these states are the

ones which are closer to the threshold, because Sender’s payoff is less sensitive to the states

than Receiver’s.

We next argue that the additional states on which only the high type accepts should be

the extreme states of his acceptance interval, because this is the cheapest way to maintain

the incentives for different types. For states above the threshold state, the higher the state,

the more likely it is that Receiver’s type is high. The high type puts more weight on a higher

state than on a lower state than the low type does. Therefore, when Sender recommends that

only the high type rather than both types accept, the benefit for the high type’s incentive

constraint net of the cost on the low type’s incentive constraint grows as the state increases.

Hence, for states above the threshold state, Sender recommends that only the high type

accept when the state is sufficiently high. For states below the threshold, the lower the

state, the more likely it is that Receiver’s type is low. The low type puts more weight on

a lower state over a higher state than the high type does. Therefore, when Sender excludes

the low type and recommends that only the high type accept, the benefit for the low type’s

incentive constraint net of the cost on the high type’s incentive constraint grows as the state

decreases. Hence, for states below the threshold state, Sender recommends that only the

high type accept when the state is sufficiently low.

In order to complete the proof, it is essential that the two properties we need—(i) that

each type’s acceptance set is an interval so that the high type’s interval contains the low

type’s interval and (ii) that the states on which only the high type accepts are the extreme

states in his interval—can be achieved simultaneously. One key observation in proving this

is that these two desirable properties are compatible with each other. In fact, we invite the

readers to convince themselves that if an interval strictly contains another interval, then the

set of states in the former that are not included in the latter are precisely the extreme states

on both sides.

Related literature. Our paper is related to the literature on persuasion. Rayo and Segal

(2010) and Kamenica and Gentzkow (2011) study optimal persuasion between a sender and

a receiver.1 We study the information design problem in which the receiver has an external

source of information. Kamenica and Gentzkow (2011) extend their baseline analysis to

situations in which the receiver has private information. They show that the geometric

method is readily generalized to the public persuasion setting. In general, it is difficult

1Rayo and Segal (2010) assume that the receiver has private information about his threshold or taste.
They examine optimal public persuasion.
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to characterize the optimal mechanism using the geometric method. For this reason, our

framework follows Kamenica and Gentzkow (2011) overall, but we assume an additional

structure over the state space and the receiver’s private information; this enables us to

derive the interval structure of the optimal mechanism, and to prove that focusing on public

persuasion is without loss at the optimum.

Kolotilin (2016) also examines optimal public persuasion when the receiver has private

information. He provides a linear programming approach and establishes conditions under

which full or no revelation is optimal. Alonso and Câmara (2016a) examine optimal per-

suasion when the sender’s prior differs from the receiver’s. In their benchmark model, both

priors are common knowledge so there is no private information. Hence, the analysis and

main results are quite different from ours. They extend their analysis to the case where the

sender is uncertain about the receiver’s prior and characterize the conditions under which

the sender benefits from persuasion.

Our result about the optimality of some public mechanism among all private mechanisms

is also related to Kolotilin et al. (2016). In their setup, the receiver privately learns about

his threshold for accepting. The receiver’s threshold is independent of the state, and the

receiver’s utility is additive in the state and his threshold. They show that, given the inde-

pendence and the additive payoff structure, any payoffs that are implementable by a private

mechanism are implementable by a public one. Our paper differs in that the receiver’s type

is informative about the state. The strong equivalence result in Kolotilin et al. (2016) does

not hold in our environment, but we show that when Receiver’s type satisfies the monotone-

likelihood-ratio property, the optimal private mechanism permits a public implementation.

Our interval structure is different from the interval mechanism in both Kolotilin et al.

(2016) and Kolotilin (2016). In those two papers, an interval mechanism is characterized by

two bounds: states below the lower bound are pooled into one signal, states above the upper

bound are pooled into another, and states between the two bounds are revealed perfectly.

Our discussion of private persuasion is also related to Bergemann, Bonatti and Smolin

(2015), who consider a monopolist who sells informative experiments to a buyer who has

private information about the state. The monopolist designs a menu of experiments and a

tariff function to maximize her profit. Our paper differs since (i) we do not allow for transfers

and (ii) Sender attempts to sway Receiver’s action.

Our model admits both the interpretation of a single receiver and that of a contin-

uum of receivers. For this reason, our paper is also related to information design with

multiple receivers. Lehrer, Rosenberg and Shmaya (2010), Lehrer, Rosenberg and Shmaya
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(2013), Bergemann and Morris (2016a), Bergemann and Morris (2016b), Mathevet, Perego

and Taneva (2016), and Taneva (2016) examine the design problem in a general environ-

ment. Schnakenberg (2015), Alonso and Câmara (2016b), Chan et al. (2016), and Guo and

Bardhi (2016) focus on the voting context. Our paper is mostly closely related to Arieli

and Babichenko (2016), who study optimal persuasion when the receivers have different

thresholds for acceptance. They assume that receivers’ thresholds are common knowledge.

Since there is no private information, their definition of private persuasion does not entail

reporting or self-selection by the receivers.

Our paper is also related to cheap talk communication (Crawford and Sobel (1982)) with

a privately informed receiver (e.g., Seidmann (1990), Watson (1996), Olszewski (2004), Chen

(2009), Lai (2014)). Chen (2009) is the closest to our setting; she assumes that the receiver

has a signal about the state, and shows that nonmonotone equilibria may arise. However,

our model differs in that we abstract away from incentive issues in disclosure and instead

focus on the optimal disclosure mechanism.

Structure of the paper. In Section 2 we formally state our results for the theorist-chair

example. Section 3 includes the general framework and our main results. Section 4 contains

a detailed discussion of the binary-type case (the finite-type case is no more complicated

than the binary-type case). This section also shows the computational advantage of our

approach in comparison with the Cav-V approach of Aumann and Maschler (1995) and

Kamenica and Gentzkow (2011). In Section 5 we explain how we use our theorem to reduce

Sender’s problem to an optimal screening problem, and use the techniques from the screening

problems to solve for the optimal mechanism in a continuous-type example. The solutions

to Sender’s problem in Sections 4 and 5 allow us to identify the situations in which it is

optimal to pool types, and those in which it is optimal to separate them. In Section 6, we

extend our results to broader payoff and information settings. Section 7 contains the proofs.

2 An example

In this section, we illustrate our question and main results by using the theorist-chair example

from the introduction. We assume that the state s is uniform on [0, 1]. The chair’s payoff

from hiring is s−3/4. The theorist’s payoff is 1 if the candidate is hired. If not, both players

get a zero payoff.

The theorist knows the state s. She designs a mechanism for disclosing more information
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about the state and can commit to this mechanism. If the chair has no private information,

the theorist will reveal whether s is above or below 1/2. She extracts the entire surplus. The

chair’s expected payoff from hiring is zero.

The chair has some private information about the state, captured by his type: given s,

the chair’s type is H with probability s and L with probability 1− s. Naturally, the higher

the state, the more likely that the chair’s type is H . Thus, type H is more optimistic about

s and easier to persuade than type L is. How does the theorist disclose information when

different types have different levels of optimism?

We show that the optimal disclosure takes the form shown in Figure 1. The x-axis is the

state. When the state is in the red region (concentrated around 3/4), the theorist claims

that the candidate is a solid one and recommends that the chair hire regardless of his type.

When the state is in the green region, the theorist claims that the candidate is creative but

also risky. She recommends that the chair hire only if his type is high. For the remaining

states, the theorist recommends not hiring.

The chair is always willing to obey the theorist’s recommendation. Conditional on s

being in the red region, type L is indifferent between hiring and not. Conditional on s being

in the green region, type H is indifferent. The theorist does not extract the entire surplus,

since type H gets a positive payoff from hiring when the state is in the red region.

s
0 13

4
πH πL πL

Both types hire

Only H type hires

Figure 1: Optimal disclosure for binary types

A central concept in our solution is the notion of nested intervals. Both types hire on an

interval of states: type L hires in the red region and type H hires in both the red and green

regions. Type L’s hiring interval is a subset of type H ’s. Compared to type H ’s interval,

type L does not hire when the state is either quite good or bad.

Thus, facing a privately informed chair, the theorist pushes for the candidate to be hired

only when the state is intermediate (i.e., in the red region) by recommending hiring regardless

of the chair’s type. When the state is quite good or bad (i.e., in the green region), the theorist

lets the chair resort to his private information and decide by himself.
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To implement such an interval structure, the theorist announces at each state the smallest

type who is still willing to hire. We call this type “the cutoff type” at each state, since all

types including and above this cutoff type will hire. (For instance, the cutoff type is L in the

red region and H in the green region.) The interval structure translates to a U-shaped cutoff

mechanism. These two notions—nested intervals and a U-shaped cutoff mechanism—are

equivalent to each other. We show that for a large class of games, the optimal disclosure

mechanism is given by a U-shaped cutoff mechanism.

3 Environment and main results

Let S be a set of states, T a set of types equipped with σ-finite measures µ, λ and consider

a distribution over S × T with density f w.r.t. µ × λ.2 In all our examples these spaces

will be either discrete spaces or intervals in the real line equipped with Lebesgue’s measure.

Let u : S → R be a bounded Borel function representing Receiver’s payoff from accepting.

Receiver’s payoff from rejecting is zero at every state. Note that the state in our framework

represents not just Receiver’s payoff but also Sender’s belief about Receiver’s type. It would

perhaps be better to use the term “Sender’s type” instead of state, but we keep the term

state to conform to the prior literature.

In this section we first define the concept of disclosure mechanisms, and then define

the incentive-compatible restrictions that correspond to two environments: (i) when the

mechanism discloses the same information to all types, and (ii) when the mechanism can

elicit Receiver’s private information and disclose different information to different types.

3.1 Disclosure mechanisms

A disclosure mechanism is given by a triple (X , κ, r) where X is a set of signals, κ is a Markov

kernel3 from S to X , and r : X × T → {0, 1} is a recommendation function: when the state

is s, the mechanism randomizes a signal x according to κ(s) and recommends that type t

accepts if and only if r(x, t) = 1. We say that a mechanism (X , κ, r) is deterministic if κ(s)

is Dirac’s measure on z(s) for some function z : S → X . This means that the mechanism

performs no randomization, so that the signal is a function of the state.

2All sets and all functions in the paper are, by assumption or by construction, Borel.
3Specifically, κ : S × B(X ) → [0, 1] such that κ(s, ·) is a probability measure over X for every s ∈ S,

where B(X ) is the sigma-algebra of Borel subsets of X . We sometimes write κ(s) for κ(s, ·).
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For a mechanism (X , κ, r), if type t follows the recommendation, then type t’s acceptance

probability at state s is given by

ρ(s, t) =

∫

r(x, t) κ(s, dx). (1)

For every function ρ : S×T → [0, 1], there exists a mechanism whose acceptance probabilities

are given by ρ. Indeed, we can choose X = [0, 1] with κ(s) = Uniform(0, 1) for every s and

with r(x, t) = 1 if and only if x < ρ(s, t). When talking about a mechanism’s properties that

depend only on the acceptance probabilities, we sometimes abuse terminology by referring to

ρ as the mechanism. One such property, which we define in Section 3.4, is private incentive-

compatibility.

3.2 Incentive compatibility

Incentive compatibility means that Receiver will follow the mechanism’s recommendation.

We now proceed to formally define incentive compatibility, under the assumption that Sender

makes the signal x public and each type t chooses an action after observing x.

A strategy for type t is given by σ : X → {0, 1}. Let σ∗
t = r(·, t) be the strategy that

follows the mechanism’s recommendation for type t. We say that the mechanism is publicly

incentive-compatible (or publicly IC) if

σ∗
t ∈ argmax

∫

f(s, t)u(s)

(
∫

σ(x) κ(s, dx)

)

µ(ds) (2)

for every type t, where the argmax ranges over all strategies σ. The expression inside the

argmax is, up to normalization, the expected payoff of type t who follows σ.

For a publicly IC mechanism, the recommendation function r is almost determined by the

signaling structure (X , κ): type t is recommended to accept if his expected payoff conditional

on the signal is positive, and to reject if it is negative. We say “almost determined” because

of the possible indifference and because the conditional expected payoff is defined up to an

event with zero probability. We omit the formal statement of this assertion, in order not to

get into the technical intricacies involving conditional distributions.
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3.3 Sender’s optimal mechanism

The Sender’s problem is:

Maximize

∫∫

f(s, t)

(
∫

r(x, t) κ(s, dx)

)

µ(ds)λ(dt) (3)

among all publicly IC mechanisms. Note that we assume a common prior between Sender

and Receiver, which is reflected by the fact that the same density function f appears in (2)

and (3). The problem would be well-defined for the case in which the density functions of

Sender and Receiver are different, but we need the common prior assumption for our results.

(See the counterexample in Section 6.3.)

From now on, we assume that S, T ⊂ R, that µ and λ have full support, and that u is

monotone-increasing.

If Receiver has no private information (that is, if T is a singleton), then—up to some

possible nuisance if the state space has atoms—the optimal mechanism is deterministic

(that is, it does not randomize) and the set of states on which the mechanism recommends

accepting is an interval of the form [π,∞). The threshold π is chosen such that Receiver’s

expected payoff from accepting is zero. In this section we provide a generalization of this

observation for the case of private information. As we shall see, each type t still accepts on

an interval of states and the interval expands as t increases. However, the most pessimistic

types’ intervals are typically bounded from above. While the lowest type would get a zero

payoff, higher types receive some information rent.

A mechanism recommends that type t accept on an interval if there exists some π 6 π ∈ S

such that ρ(s, t) = 1 whenever s ∈ (π, π), and ρ(s, t) = 0 whenever s /∈ [π, π]. If the

mechanism is deterministic, then this condition means that the set of states on which it

recommends that type t accept is an interval. If the mechanism is not deterministic, then

the mechanism may randomize at the endpoints of the interval.

We need the following additional assumption:

Assumption 1. The set of types T is closed and bounded from below. The density function

f(s, t) is continuous in t and satisfies the increasing monotone likelihood ratio (i.m.l. ratio),

i.e., f(s, t)/f(s, t′) is (weakly) increasing in s for every t′ < t.

We say that the mechanism is a cutoff mechanism if X = T ∪ {∞} and the recommen-

dation function is given by r(x, t) = 1 ←→ t > x. That is, a cutoff mechanism announces

a type x and recommends that all higher types accept. A deterministic cutoff mechanism is
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such that κ(s) is Dirac’s measure on z(s) for some function z : S → T ∪ {∞}.

Our structural theorem states that Sender’s optimal mechanism is a cutoff mechanism

that recommends that each type accept on an interval. For a deterministic cutoff mechanism,

this means that the cutoff function z : S → T ∪ {∞} is U-shaped. (The right-hand side

of Figure 3 depicts a U-shaped cutoff function.) Recall that z is U-shaped if there exists

some s0 such that z is monotone-decreasing for s 6 s0, and monotone-increasing for s > s0.

Equivalently, z is U-shaped if the set {s : z(s) 6 t} is an interval for every t. For the case of

a nondeterministic cutoff mechanism, we say that a Markov kernel κ from S to T ∪ {∞} is

U-shaped if there exists some s0 ∈ S such that for every s′ < s 6 s0 and for every s0 6 s < s′,

every t ∈ support(κ(s)) and t′ ∈ support(κ(s′)) satisfy t 6 t′.

Theorem 3.1. The optimal publicly IC mechanism is a U-shaped cutoff mechanism. If µ

is nonatomic, then this optimal mechanism is also deterministic and the cutoff function is

increasing on the set {s : u(s) > 0} and decreasing on the set {s : u(s) 6 0}.

It is a standard argument that under Assumption 1 every publicly IC mechanism is es-

sentially a cutoff mechanism. (We do not formalize and prove the last assertion because we

do not need it. We say “essentially” because of the possible indifference and the intricacy on

zero-probability events.) Theorem 3.1 states that the optimal mechanism has the additional

property that it recommends that each type accept on an interval (or on a “fractional inter-

val,” with some probability of acceptance at the endpoints of the interval in the case of an

atomic state space).

The i.m.l. ratio part of Assumption 1 is essential for Theorem 3.1. (See the counterex-

ample in Section 6.2.) The continuity part is not. Without it, we would have to modify the

definition of a cutoff mechanism: in addition to announcing the cutoff type, the mechanism

would have to announce whether the cutoff type is supposed to accept or reject.

3.4 Private incentive-compatibility

We now consider a different environment in which Sender discloses different information to

different types. Thus, Receiver does not observe the realized signal x, but can only report

some type t′ and observe r(x, t′). This restricts the set of possible deviation strategies,

and gives rise to a weaker notion of incentive compatibility which we call private incentive-

compatibility.

We say that the mechanism is privately incentive-compatible (or privately IC) if (2) holds

for every type t where the argmax ranges over all strategies σ of the form σ(x) = σ̄(r(x, t′))
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for some type t′ ∈ T and some σ̄ : {0, 1} → {0, 1}. We note that, in contrast with pub-

lic incentive-compatibility, private incentive-compatibility depends only on the acceptance

probabilities ρ given by (1).

It is easy to see that every mechanism that is publicly IC is also privately IC. (The

example in Section 6.4 shows that not every privately IC mechanism can be duplicated by a

publicly IC one.) Hence, the optimal privately IC mechanism gives Sender a weakly higher

payoff than the optimal publicly IC one does. Our next result shows that Sender does not

do better under privately IC mechanisms.

Theorem 3.2. No privately IC mechanism gives a higher payoff to Sender than the optimal

publicly IC mechanism.

Our definitions of mechanisms and incentive compatibility are different from those of

other papers (such as Kolotilin et al. (2016)) which define the notion of mechanisms dif-

ferently in the public environment than in the private one. For our purposes, we use the

same definition of mechanisms for both environments and make the distinction at the level of

incentive compatibility. This approach renders the logical implication between private and

public incentive-compatibility straightforward, and it simplifies the proofs of our theorems.

3.5 Downward incentive-compatibility

In this section, we introduce the notion of downward incentive-compatibility, that is, type

t prefers to follow the mechanism’s recommendation for his type over following its recom-

mendation for a lower type t′. We prove Theorem 3.1 and Theorem 3.2 with the help of this

notion and show that the only binding IC constraints are the downward ones. This simplifies

Sender’s problem further since other IC constraints can be ignored. (Moreover, for the case

of discrete type spaces, the adjacent downward constraints are sufficient.) This also connects

our problem to the standard screening problem, where it is typical to have only downward

constraints bind.

We say that the mechanism (X , κ, r) is downward incentive-compatible (or downward

IC) if (i) for every type t, (2) holds where the argmax ranges over all strategies σ of the

form σ(x) = r(x, t′) for some type t′ ≤ t; and (ii) the lowest type t prefers to follow the

recommendation for his type over always rejecting. It is easy to see that every privately

(and, in particular, publicly) IC mechanism is downward IC.

Theorem 3.1 and Theorem 3.2 are immediate consequences of the following theorem:
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Theorem 3.3. The optimal downward IC mechanism is a U-shaped cutoff mechanism. This

optimal mechanism is publicly IC. If µ is nonatomic, then this optimal mechanism is also

deterministic and the cutoff function is increasing on the set {s : u(s) > 0} and decreasing

on the set {s : u(s) 6 0}.

It follows from Theorem 3.3 that when we search for the optimal publicly IC mechanism,

we can optimize over the set of U-shaped cutoff mechanisms that are downward IC. This

set is especially easy to work with in the case of finite type spaces, because in this case the

adjacent downward-IC constraints are sufficient. We now proceed to formalize this fact.

Let

U(t′, t) =

∫

f(s, t)u(s)

∫

r(x, t′) κ(s, dx)µ(ds)

be the utility for type t from mimicking t′. Then the mechanism is downward IC iff

U(t, t) > U(t′, t), for every types t′ 6 t ∈ T , and (4)

U(t, t) > 0. (5)

The following lemma, which follows from the definition of i.m.l. ratio, is familiar from the

standard screening problem: if t′′ 6 t′ 6 t are types such that type t′ does not want to mimic

type t′′, then type t prefers to mimic t′ over mimicking t′′.

Lemma 3.4. Every cutoff mechanism has the following property:

U(t′, t′) > U(t′′, t′)→ U(t′, t) > U(t′′, t), for every t′′ 6 t′ 6 t.

Corollary 3.5. If T = {t = t0 < t1 < · · · < tn} is finite, then in condition (4) in the

definition of downward incentive-compatibility, it is sufficient to consider the case where

t = tk and t′ = tk−1 for every 1 6 k 6 n.

In Sections 4 and 5, we show how to use our theorems to find the optimal publicly IC

mechanism by analyzing the binary-type case and the continuous-type case, respectively.

4 The binary-type case

Consider the case in which T = {H,L} (high and low types) and S = [0, 1]. Receiver’s

payoff u is strictly monotone-increasing, and u(ζ) = 0 for some ζ ∈ [0, 1]. Assumption 1
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means that f(s,H)
f(s,L)

is monotone-increasing in s. Sender’s problem is trivial if type L accepts

without further information, so we assume otherwise.

Our Theorem 3.1 shows that the optimal mechanism takes the form of nested intervals.

We choose the endpoints of the intervals 0 6 πH 6 πL 6 ζ 6 πL 6 πH 6 1 such that type

L accepts when s ∈ [πL, πL] and type H accepts when s ∈ [πH , πH ]. We maximize Sender’s

payoff subject to downward incentive constraints. By Corollary 3.5 we have one incentive

constraint for each type:

Maximize
πH ,πL,πL,πH

∫ πL

πL

f(s, L) ds+

∫ πH

πH

f(s,H) ds

subject to 0 6 πH 6 πL 6 ζ 6 πL 6 πH 6 1,
∫ πL

πL

f(s, L)u(s) ds > 0,

∫ πL

πH

f(s,H)u(s) ds+

∫ πH

πL

f(s,H)u(s) ds > 0.

(6)

Hence, our result reduces Sender’s problem to a finite-dimensional constrained optimization.

In the example in Section 4.1, the problem can be solved explicitly. Here, we first provide a

qualitative description of the solution. It is clear that the optimal solution satisfies πH = 1;

otherwise increasing πH would increase Sender’s payoff without violating the constraints.

Similarly, πL < πH ←→ πH < πL. Thus, there are two possibilities for the optimal solution:

If πH = πL = 1, Sender pools the two types. She recommends that both types accept if

s ∈ [πL, 1] and that both reject otherwise. If πH < πL 6 πL < πH = 1, Sender offers a

separating mechanism.

Proposition 4.1. Pooling is optimal if and only if

f(1, H)

f(1, L)
−

f(π∗
L, H)

f(π∗
L, L)

< 1−
u(π∗

L)

u(1)
, (7)

where π∗
L is such that

∫ 1

π∗

L

f(s, L)u(s) ds = 0. In this case the mechanism recommends that

both types accept on [π∗
L, 1].

The condition (7) states that Sender does not benefit from marginally shrinking type

L’s acceptance interval in order to expand type H ’s acceptance interval. Starting from the

pooling interval [π∗
L, 1], Sender can replace type L’s interval by

[

π∗
L + f(1,L)

f(π∗

L
,L)

u(1)
−u(π∗

L
)
ε, 1− ε

]

for small ε > 0, without violating type L’s incentive constraint. Due to the i.m.l. ratio
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assumption, this change allows Sender to lower πH , so that type H accepts more often.

Pooling is optimal only if Sender does not benefit from such an operation. We use (6) to

show that this condition is also sufficient.

4.1 Example

We further assume that s is drawn uniformly from [0, 1] and that u(s) = s − ζ where

ζ is a parameter. Receiver’s private information about the state is given by a coin toss

with probability 1/2 + φ(s − 1/2) for success. Receiver is of type H or type L when the

outcome of the coin toss is success or failure, respectively. The parameter φ ∈ [0, 1] measures

how informative Receiver’s private information is. When φ = 0, Receiver has no private

information. As φ increases, type H is increasingly more optimistic than type L is. With

this formulation, the joint density is given by

f(s,H) = 1/2 + φ(s− 1/2), and f(s, L) = 1/2− φ(s− 1/2) for 0 6 s 6 1.

If ζ 6
3−φ

6
, then type L prefers to accept absent further information. In this case the optimal

mechanism always recommends that both types accept. We thus assume that ζ > 3−φ

6
.

From Proposition 4.1 we get Corollary 4.1, which states that separating is strictly optimal

when φ is sufficiently large. Intuitively, the more type H ’s belief differs from type L’s, the

more likely it is that Sender obtains a higher payoff from separating by sometimes persuading

only type H to accept.

Corollary 4.1. There exists an increasing function Φ(·) such that the optimal mechanism

is separating if φ > Φ(ζ), and pooling if φ < Φ(ζ).

Proof. Substituting f(s,H), f(s, L), u(s) into the condition in Proposition 4.1, we find that

this condition holds if and only if

ζ >
3φ3 + 13φ2 − (φ− 1)2

√

9φ2 − 6φ+ 33 + 21φ− 5

8φ(3φ+ 1)
,

and the right-hand side is monotone-increasing in φ, as desired.

4.2 Example revisited: a comparison with the cav-V approach

We now compare our approach with the general concavification (cav-V) approach, following

Aumann and Maschler (1995) and Kamenica and Gentzkow (2011, Section VI A), by revisit-
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ing the example from Section 4.1. We first apply the general cav-V approach to this setting.

For convenience we assume φ = 1, and thus, f(s,H) = s and f(s, L) = 1 − s. If Sender’s

signal induces distribution γ over states, then Receiver is of type H or L with probabilities
∫

s γ(ds) and 1 −
∫

s γ(ds), respectively. Type H accepts if
∫

s(s − ζ) γ(ds) > 0. Type L

accepts if
∫

(1− s)(s− ζ) γ(ds) > 0. Therefore, Sender’s payoff from the belief γ induced by

her signal is given by

V (γ) =



















1, if
∫

(1− s)(s− ζ) γ(ds) > 0,

0, if
∫

s(s− ζ) γ(ds) < 0,
∫

s γ(ds), otherwise.

Note that, even though Receiver’s optimal action in this example depends only on his con-

ditional mean of the state, given his private information and Sender’s signal, Sender’s payoff

V (γ) from a posterior γ over states is not a function of the posterior mean
∫

s γ(ds) alone.

Thus, the example is not in the class of persuasion problems analyzed by Gentzkow and

Kamenica (2016) and Dworczak and Martini (2017).

The cav-V approach states that the optimal utility for Sender is given by cavV (γ0),

where cavV is the concave envelope of V and γ0 is the prior over states, which is uniform in

our example. Because V is piecewise linear, the concavification is achieved at some convex

combination:

γ0 = α1γ1 + α2γ2 + α3γ3, (8)

where the distributions γ1, γ2, γ3 belong to the three regions that define V . Finding the

optimal combination amounts to solving the following infinite-dimensional LP problem with

variables g1, g2, g3 ∈ L∞(γ0) that correspond to the densities of α1γ1, α2γ2, and α3γ3 w.r.t.

γ0. (It follows from (8) that γi are absolutely continuous w.r.t. γ0.) Sender’s problem is:

Maximize
g1,g2,g3

∫ 1

0

g1(s) + sg2(s) ds

subject to g1(s) + g2(s) + g3(s) = 1, ∀s,
∫ 1

0

(1− s)(s− ζ)g1(s) ds > 0,

∫ 1

0

s(s− ζ)g2(s) ds > 0.

In contrast, as shown in Section 4, our approach reduces Sender’s problem to a finite-
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dimensional constrained optimization, which is much simpler than the infinite-dimensional

LP problem above.

5 A continuous-type example

We next illustrate the main results by a continuous-type example. An additional goal is to

show the relationship between Sender’s problem in our setup and the monopoly screening

problem, as in Mussa and Rosen (1978).

In the examples in this section the type space is T = [0, 1] and the state space is S =

[−1, 1]. Receiver’s u(s) is constant over negative states, i.e., there exists η > 0 such that

u(s) = −η for every s < 0. We assume that u(s) > 0 for s > 0, so that Receiver prefers to

accept if and only if s > 0. Here, the parameter η > 0 measures how costly it is for Receiver

to accept when the state is negative. The density function of every type over states is also

constant over negative states, i.e., there exists some f : T → R+ such that f(s, t) = f(t) for

every s < 0. Finally, we also assume that the marginal distribution over types is uniform so

that
∫ 1

−1
f(s, t) ds = 1 for every t. The last assumption is for convenience only.

The highest type’s payoff if he accepts under his prior belief is

∫ 1

−1

f(s, 1)u(s) ds = −ηf(t) +

∫ 1

0

f(s, 1)u(s)ds.

We make a simplifying assumption that the highest type rejects in the absence of further

information.

Assumption 2. The highest type rejects in the absence of further information.

From Theorem 3.1 we know that each type accepts on an interval of states that contains

state 0. We let [π(t), π(t)] denote the interval for type t. Consider an arbitrary such interval
[

q, q
]

with −1 6 q 6 0 6 q 6 1. The payoff of type t from accepting on this interval is given

by
∫ q

q

f(s, t)u(s)ds = f(t) ·
(

U(q, t) + ηq
)

,

where U(q, t) =
∫ q

0
f(s, t)u(s) ds/f(t) is the utility of type t from accepting on [0, q], normal-

ized by f(t). Thus, when we restrict attention to acceptance sets that are intervals, we can

view type t as a buyer with quasilinear utility who gets utility U(q, t) + ηq from receiving

quantity q of a divisible good and paying −ηq money. The private IC constraints in our
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framework translate to the standard IC constraints for selling the good when the buyer’s

type is private.

The Spence-Mirrlees sorting condition ∂
∂q,∂t

U(q, t) > 0 holds in our setup given the i.m.l.

ratio assumption. From the theory of optimal screening we therefore know that IC constraints

hold if and only if π is monotone-increasing and

− ηπ(t) = U(π(t), t)−

∫ t

0

U 2(π(τ), τ) dτ, (9)

where U 2 is the derivative of U w.r.t. the type. Note that given π(t), the IC constraints

determine the “payment” −ηπ(t) up to a constant, so we could add some C 6 0 to the right-

hand side; however as in the monopoly screening problem, it is optimal to choose C = 0.

Also, our setup has an additional requirement that π(t) > −1. (In terms of the monopoly

screening problem, this would correspond to an upper bound on the payment.) Assumption 2

makes sure that this constraint does not bind.

For every q > 0, we let F (q, t) =
∫ q

s=0
f(s, t) ds be Sender’s utility from accepting in [0, q].

Sender’s payoff is given by

∫ 1

0

∫ π(t)

π(t)

f(s, t)dsdt =

∫ 1

0

(

−f(t)π(t) +

∫ π(t)

0

f(s, t)ds

)

dt

=

∫ 1

0

(

U(π(t), t)f(t)− U2(π(t), t)
∫ 1

t
f(z)dz

η
+ F (π(t), t)

)

dt. (10)

Thus, Sender’s problem in our setup has the same structure as the monopoly screening

problem: we need to maximize (10) over all monotone-increasing functions π : [0, 1]→ [0, 1].

As in the case of the monopoly screening problem, this is in general a control problem. Under

some regularity assumption, the monotonicity constraints do not bind, so we can continue

without resorting to the control theory.

We now assume that the joint density of (s, t) is

f(s, t) =







2
φ(2t−1)+4

, if s ∈ [−1, 0) ,

2
φ(2t−1)+4

(φs(2t− 1) + 1), if s ∈ [0, 1] .

The parameter φ ∈ [0, 1] measures how informative Receiver’s type is: when φ = 0, Receiver

has no private information. As φ increases, a higher type becomes progressively more opti-

mistic than a lower type does. Receiver’s utility from accepting is u(s) = −η < 0 if s < 0,
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and u(s) = s if s > 0.

Sender’s and type t’s utilities if type t accepts on [0, q] are given by

F (q, t) =
q(φq(2t− 1) + 2)

φ(2t− 1) + 4
, and U(q, t) =

1

6
q2(2φq(2t− 1) + 3).

Substituting into Sender’s problem (10) and simplifying, we can write Sender’s payoff as

∫ 1

0







2
(

φ(2t−1)
φ(2t−1)+4

− log
(

φ+4
φ(2t−1)+4

))

3η
π(t)3 +

ηφ(2t− 1) + 1

η(φ(2t− 1) + 4)
π(t)2 +

2

φ(2t− 1) + 4
π(t)







dt.

(11)

Sender maximizes her payoff by choosing π(t) to maximize the integrand pointwise. If we

ignore the constraint π(t) 6 1, the integrand is maximized at:

π∗(t) :=
2η

ηφ(1− 2t)− 1 +

√

(ηφ(1− 2t) + 1)2 + 4η(φ(2t− 1) + 4) log
(

φ+4
φ(2t−1)+4

)

. (12)

When Receiver’s type is not informative enough, π∗(t) is greater than 1. The integrand is

maximized at the highest state 1 for every t. In this case, the optimal mechanism is pooling.

Proposition 5.1. There exists an increasing function Φ(·) such that Sender pools all types

if and only if φ 6 Φ(η): Sender sets π(t) to be 1, and π(t) is a constant which is chosen

such that the lowest type is indifferent.

Figure 2 shows how the optimal mechanism varies as (φ, η) vary. Assumption 2 states

that the highest type rejects without further information, i.e., 6η > 2φ+3. This corresponds

to the parameter region above the solid line. The dashed line corresponds to the function

Φ−1(·). To the right of the dashed line, semi-separating is optimal; to the left, pooling is

optimal.

When φ > Φ(η), the maximizer π∗(t) is below 1 when Receiver has the lowest type 0.

We show that π∗(t) increases to 1 at some type t̂. Thus, the integrand in (11) is maximized

at π∗(t) when t 6 t̂ and at 1 when t > t̂. Given this π(t), π(t) can be derived based on the

incentive constraints (9). We show in Lemma 7.3 (in Section 7.3) that both π∗(t) and the

corresponding π(t) increase in η for any fixed t.

Proposition 5.2. Suppose that φ > Φ(η). Then,

20



φ

η

Pooling
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separating

Φ−1(φ)

0 1

Figure 2: Pooling is optimal when φ is small

(i) π(t) =







π∗(t) for t 6 t̂

1 for t > t̂,
where t̂ is the critical type such that π∗

(

t̂
)

= 1;

(ii) π(t) is determined by the incentive constraints (9).

Figure 3 illustrates the optimal mechanism in which Sender separates the lower types.4

The left-hand side illustrates each type t’s acceptance interval [π(t), π(t)], which expands as

t increases. The solid curves correspond to π(t) and π(t) for a lower η, and the dashed ones

for a higher η. As η increases, Sender is less capable of persuading Receiver to accept in

unfavorable states. Hence, both allocations π(t), π(t) increase.

The right-hand side of Figure 3 illustrates how to implement the optimal mechanism in

a publicly IC mechanism by examining the case where η is 1. The solid curve corresponds

to the U-shaped cutoff function z(s). For all the states below π(1), Sender recommends

rejection. For any state s above π(1), Sender announces z(s) and recommends that types

above z(s) accept. For a small segment of states surrounding state 0, z(s) equals the lowest

type, so all types accept. For any higher state s, Sender always mixes it with a lower state

so that type z(s) is indifferent when he is pronounced to be the cutoff type.

6 Discussion

In this section, we extend our results to more general payoff and information settings. We

then provide some examples to show (i) that Theorem 3.1 and Theorem 3.2 may not hold

without the common prior or the i.m.l. ratio assumption and (ii) that not every privately

4The parameter values are φ = 1, η = 1 for the solid line, and η = 4/3 for the dashed line.
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Figure 3: Optimal mechanism and its implementation

IC mechanism can be duplicated by a publicly IC one. All the assertions in the examples in

this section were verified by solving the corresponding LP problems.

6.1 More general settings

We make the following modifications to the model:

• We assume that Receiver’s payoff from accepting depends on his type. We use u(s, t)

to denote type t’s payoff when accepting at state s.

• We assume that Sender’s payoff from accepting depends on the state and on Receiver’s

type. We use v(s, t) to denote Sender’s payoff when Receiver t accepts at state s. We

assume that v(s, t) > 0 for every s, t.

• We allow heterogeneous beliefs. We continue to denote Receiver’s belief by f(s, t), but

we now denote Sender’s belief by g(s, t). We assume that g(s, t) > 0 for every s, t.

We omit the definitions of incentive compatibility and Sender’s problem in this new envi-

ronment but they should be straightforward. For Theorem 3.1, 3.2, and 3.3 and the proof

to hold, we need two assumptions: First, for every type t, we need f(s,t)u(s,t)
g(s,t)v(s,t)

to be monotone

in s. Second, for every t′ < t, we need f(s,t)u(s,t)
f(s,t′)u(s,t′)

to be monotone in s. Note that the second

assumption implies in particular that there exists some s0 ∈ S such that u(s, t) ≥ 0 for

s ≥ s0 and u(s, t) ≤ 0 for s ≤ s0. And, as before, in order for the cutoff type to always

accept, we also need u(s, t), v(s, t), f(s, t) and g(s, t) to be continuous in t.
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One interesting example occurs when, with all else fixed, Sender’s payoff depends on the

state. In the context of the theorist-chair example, this is the case if the theorist’s payoff from

hiring also increases in the state. Our theorems still hold when we replace the assumption

that u is monotone in s with the assumption that u/v is monotone.

6.2 The i.m.l. ratio assumption

The following example shows that without the i.m.r. ratio assumption—ranking of types

w.r.t. the monotone-likelihood-ratio order—Theorems 3.1 and 3.2 may not hold.

Example 1. Let S = {−4,−3, 3} with Receiver’s payoff from accepting given by u(s) = s,

and let T = {T,B}. The density over states and types is given by

−4 −3 3

T 1/6, 1/6, 1/6

B 3/54, 20/54, 4/54

The unique optimal publicly IC mechanism pools the two types and, if the state is s, rec-

ommends that both accept with probability ρ(s) where

ρ(−4) = 12/17, ρ(−3) = 1/17, ρ(3) = 1. (13)

The unique optimal privately IC mechanism recommends that T accept (with probability

1) if the state is 3 or −3, and reject if the state is −4. It recommends that B accept with

probability ρ(s) if the state is s where ρ is given by (13). Thus, the optimal publicly IC

mechanism and the optimal privately IC mechanism give different payoffs to Sender, and

neither recommends that type B accept on an interval.

6.3 The common-prior assumption

Our formulation implicitly assumed a common prior between Sender and Receiver, since

the same density function f over states and types was used in the definitions of incentive

compatibility and Sender’s problem. The following example shows that Theorem 3.1 and

Theorem 3.2 may not hold without this assumption.

Example 2. Assume that S = {−2,−1, 1} with u(s) = s, and T = {H,L}. Let Receiver’s

and Sender’s beliefs be given by the following density functions:
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Receiver’s belief

−2 −1 1

H 1/10, 2/10, 2/10

L 4/12, 1/12, 1/12

Sender’s belief

−2 −1 1

H 8/20, 4/20, 4/20

L 2/20, 1/20, 1/20

Receiver’s belief satisfies the i.m.l. ratio assumption and Sender believes that the type and

the state are independent.

The unique optimal publicly IC mechanism gives up on L and recommends that H accept

if the state is either −2 or 1, and reject if the state is −1. The unique optimal privately IC

mechanism recommends that L accept if the state is either −1 or 1, and reject if the state

is −2; it also recommends that H accept if the state is either −2 or 1, and reject if the state

is −1.

Thus, the optimal publicly IC mechanism and the optimal privately IC mechanism give

different payoffs to Sender, and neither recommends type H accept on an interval.

6.4 Equivalence between public and private incentive-compatibility

Theorem 3.2 implies that, for the optimal privately IC mechanism, there exists a publicly

IC mechanism which is equivalent in the sense that each type has the same probability

of accepting. The following example shows that such an equivalent mechanism does not

necessarily exist for a nonoptimal privately IC mechanism. The example shows that the

strong equivalence result in Kolotilin et al. (2016) does not hold in our setup.

Example 3. Let S = {−1000, 1, 10} with utility u(s) = s, and let T = {H,L}. The prior

over types and states is given by

−1000 1 10

H 5/22, 5/22, 1/22

L 20/82, 20/82, 1/82

Consider a mechanism which recommends that H accept if the state is 10 and reject oth-

erwise, and which recommends that L accept if the state is 1 and reject otherwise. This

mechanism is privately IC (and of course not optimal). Under this mechanism, type H

accepts with the interim probability 1/11 and type L accepts with the interim probability

20/41. However, no publicly IC mechanism exists with these interim acceptance probabili-

ties.
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7 Proofs

7.1 Proof of Theorem 3.3

We assume w.l.o.g. that u(0) = 0. We also assume w.l.o.g. that S is an interval and that µ is

Lebesgue’s measure. This is because the IC properties of a mechanism and Sender’s payoff

depend only on the joint distribution of the state and the mechanism’s recommendations

to each type; moreover, by Skorokhod’s representation theorem, the random variable that

represents the state can be implemented as a monotone function of an interval state space.

For example, if the state space is binary with two equally probable states s0 < s1, then one

can think of the state as a function of some s ∈ [−1, 1] drawn from a uniform distribution.

Thus, the state is s0 if s ∈ [−1, 0] and s1 if s ∈ [0, 1], and Sender can create s by randomizing

from a uniform distribution on [−1, 0] or [0, 1] when the state is s0 or s1, respectively.

This leads to a correspondence between mechanisms defined on the state space {s0, s1}

and mechanisms defined on the state space [−1, 1], a correspondence that preserves the IC

properties and Sender’s payoff (but which may transform a deterministic mechanism into a

nondeterministic mechanism).

For a given mechanism with acceptance probabilities ρ, let

v(t) =

∫

f(s, t)ρ(s, t) µ(ds)

be the normalized probability that type t accepts. We say that a mechanism ρ weakly

dominates another mechanism ρ′ if v(t) > v′(t) for every type t. We say that ρ dominates

ρ′ if it weakly dominates ρ′, and v(t) > v′(t) for some t.

The proof of Theorem 3.3 will use Lemma 7.1 and 7.2. Lemma 7.1 establishes the fact

that when one searches for the optimal downward IC mechanism, it is sufficient to search

among U-shaped cutoff mechanisms that are downward IC. Lemma 7.2 asserts that, for any

cutoff mechanism that is downward IC, if we publicly declare the cutoff type x, then all types

which are supposed to accept (i.e., types t such that t > x) will still accept. It is possible

that lower types will also accept.

Lemma 7.1. For every downward IC mechanism there exists a U-shaped function z : S →

T ∪ {∞}, such that the cutoff mechanism given by z is downward IC and weakly dominates

the original mechanism.

Lemma 7.2. For every cutoff mechanism κ that is downward IC, the publicly IC mechanism

induced by this mechanism has the property that type t accepts when t > x.
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Using Lemmas 7.1 and 7.2, we prove Theorem 3.3 in three steps. First, among all U-

shaped cutoff mechanisms that are downward IC, there exists one z∗ that is optimal to

Sender. Second, this mechanism z∗ is not dominated by any other U-shaped cutoff mecha-

nism that is also downward IC. Third, z∗ is publicly IC.

For the case in which the type space T is finite, the first and second steps of the proof

are immediate since the space of U-shaped cutoff mechanisms is finite-dimensional; this is

because every U-shaped cutoff mechanism is given by the endpoints of the intervals. For the

case where T is a continuum, we need to be more careful in establishing the existence of

Sender’s optimal mechanism and in showing that it is not dominated, because of the possible

problem with sets of types of measure zero. Aside from these nuisances, the core of the proof

is in the third step. This step uses Lemma 7.1 and Lemma 7.2.

Proof of Theorem 3.3. Consider the space Z of all U-shaped functions z : S → T ∪ {∞}

with minimum at 0. This space, viewed as a subspace of L∞(S → T ∪ {∞}) equipped with

the weak star topology, is compact. The set of such functions z ∈ Z which give rise to

downward IC mechanisms is a closed subset of Z. We denote this subset by Z̃. Sender’s

payoff
∫∫

z(s)≤t
f(s, t) µ(ds) λ(dt) is a continuous function of z. Therefore, there exists a

z∗ ∈ Z̃ which maximizes Sender’s payoff.

For each z ∈ Z̃, the normalized probability that type t accepts vz(t) =
∫

t>z(s)
f(s, t) µ(ds)

is a right-continuous function of t, which follows from the continuity assumption on f .

Because vz is right-continuous and λ has full support, the maximum z∗ cannot be dominated

by any z ∈ Z̃ , i.e., if vz(t) ≥ vz∗(t) for every t, then vz = vz∗ .

By Lemma 7.1 the cutoff mechanism induced by z∗ is optimal for Sender among all

downward IC mechanisms. We must still show that z∗ is publicly IC. By Lemma 7.2 the

acceptance set of each type t under the publicly IC mechanism induced by z∗ is at least the

event {s : z∗(s) 6 t}. Therefore, if the cutoff mechanism z∗ were not publicly IC, then it

would be dominated by a publicly IC mechanism. By Lemma 7.1 again, this publicly IC

mechanism is itself weakly dominated by a U-shaped cutoff mechanism given by some z ∈ Z̃,

which is a contradiction to the fact that z∗ is not dominated by any z ∈ Z̃.

The proof of Lemma 7.1 has two steps. We begin with an arbitrary downward IC mech-

anism. In the first step we concentrate the acceptance probabilities of each type t to an

interval
[

p(t), p(t)
]

around 0, in such a way that the utility (disutility) that each type gets

from positive states (negative states) is the same as in the original mechanism. This step

preserves the downward IC conditions and weakly increases the acceptance probability of

each type.
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In the second step we make the mechanism a cutoff mechanism by essentially letting each

type accept at the union of his interval and all intervals of lower types. This creates the new

acceptance intervals [π(t), π(t)], which are nested in the sense that π is monotone-decreasing

and π is monotone-increasing. If T is finite, then we can now define a cutoff function z that

induces these acceptance intervals, i.e., such that

z(s) 6 t←→ π(t) 6 s 6 π(t), (14)

by z(s) = min{t : s ∈ [π(t), π(t)]}. The case of continuum types has an additional com-

plication, because in order to obtain a cutoff function z such that (14) holds, we need an

additional continuity assumption on π(t), π(t).5 This additional complication is due to our

insistence that the cutoff type will accept. A more general definition, which allows the mech-

anism to recommend that the cutoff type either accept or reject, would have spared us some

technical difficulties in the proof, but we chose to make the definitions easier for the reader.

Proof of Lemma 7.1. For every type t let p(t) and p(t) be such that p(t) 6 0 6 p(t) and

∫ ∞

0

f(s, t)u(s)ρ(s, t)µ(ds) =

∫ p(t)

0

f(s, t)u(s)µ(ds), and

∫ 0

−∞

f(s, t)u(s)ρ(s, t)µ(ds) =

∫ 0

p(t)

f(s, t)u(s)µ(ds).

(15)

From (15) and the i.m.l. ratio assumption, it follows that:

∫ ∞

0

f(s, t)u(s)ρ(s, t′)µ(ds) >

∫ p(t′)

0

f(s, t)u(s)µ(ds), and

∫ 0

−∞

f(s, t)u(s)ρ(s, t′)µ(ds) >

∫ 0

p(t′)

f(s, t)u(s)µ(ds)

(16)

for t′ < t. From (15), (16), and (4), it follows that:

∫

f(s, t)u(s)
(

1[p(t),p(t)] − 1[p(t′),p(t′)]

)

µ(ds) > 0 (17)

for every t′ < t.

5For example, if [π(t), π(t)] =

{

[−2, 2], if t > 1

[−1, 1] if t ≤ 1
, then no such z exists.
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In addition, the monotonicity of u and the fact that 0 6 ρ(s, t) 6 1 imply that

∫ ∞

0

f(s, t)ρ(s, t)µ(ds) 6

∫ p(t)

p(t)

f(s, t)µ(ds) (18)

by the Neyman-Pearson Lemma.

Thus, the mechanism with acceptance intervals
[

p(t), p(t)
]

is downward IC (17) and

weakly dominates the original mechanism (18). Note, however, that this is not yet a cutoff

mechanism.

We now introduce nested acceptance intervals [π(t), π(t)] which are downward IC and

which will give rise to a cutoff mechanism. Let π(t) = infε>0 sup {p(t
′) : t′ < t+ ε} and

π(t) = infε>0 inf
{

p(t′) : t′ < t+ ε
}

be the right-continuous and monotone functions that

dominate p and p, respectively, and let z be given by (14):

z(s) 6 t←→ π(t) 6 s 6 π(t).

It is easy to see that the cutoff mechanism given by z with acceptance intervals [π(t), π(t)]

weakly dominates the mechanism with acceptance intervals
[

p(t), p(t)
]

. We claim that the

former mechanism is downward IC.

Let t′ < t. We first need to show that for the mechanism (π, π), type t will not mimic a

lower type t′, i.e., that

∫

f(s, t)u(s)
(

1[π(t),π(t)] − 1[π(t′),π(t′)]

)

µ(ds) > 0. (19)

Let tk, t
′
k be such that

lim
k→∞

tk = t∞ 6 t and p(tk) ↑ π(t), and

lim
k→∞

t′k = t′∞ 6 t′ and p(t′k) ↑ π(t
′).

If t∞ 6 t′, then π(t′) = π(t); and from (14) it follows that {t′ 6 z(s) < t} ⊆ {s > 0}, so (19)

holds. Therefore, we can assume that t′ < t∞ and therefore, t′k < tk for every k.

From the definition of π, the continuity assumption on f , and the fact that limk→∞ tk =

t∞, it follows that lim supk→∞ p(tk) 6 π(t∞) and limk→∞ f(s, tk) = f(s, t∞). In addition, we

know that lim supk→∞ p(t′k) = π(t′). From these properties and Fatou’s Lemma, it follows
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that

lim sup
k→∞

∫ p(tk)

p(t′
k
)

f(s, tk)u(s)µ(ds) 6

∫ π(t∞)

π(t′)

f(s, t∞)u(s)µ(ds).

By a similar argument, we have that lim supk→∞ p(t′k) > π(t′) and lim supk→∞ p(tk) = π(t).

When this result is combined with the condition that u(s) 6 0 for any s 6 0, we have that

lim sup
k→∞

∫ p(t′
k
)

p(tk)

f(s, tk)u(s)µ(ds) 6

∫ π(t′)

π(t∞)

f(s, t∞)u(s)µ(ds).

Therefore, it follows that:

∫

f(s, t∞)u(s)
(

1[π(t),π(t)] − 1[π(t′),π(t′)]

)

µ(ds)

>

∫ π(t′)

π(t∞)

f(s, t∞)u(s)µ(ds) +

∫ π(t∞)

π(t′)

f(s, t∞)u(s)µ(ds)

> lim sup
k→∞

(

∫ p(tk)

p(t′
k
)

f(s, tk)u(s)µ(ds) +

∫ p(t′
k
)

p(tk)

f(s, tk)u(s)µ(ds)

)

> 0.

Given the i.m.l. ratio assumption,
∫

f(s, t)u(s)
(

1[π(t),π(t)] − 1π(t′),π(t′)]

)

µ(ds) must be positive

as well since t > t∞. This proves (19).

Finally, we need to show that the lowest type gets a payoff of at least zero from obeying

under the mechanism (π, π). In the case of discrete type spaces, this follows from the

corresponding property of the original mechanism since in this case π(t) = p(t) and π(t) =

p(t). In the general case we need to appeal to an argument similar to the one we used

to prove the downward IC conditions using converging sequences of types. We omit this

argument here.

Proof of Lemma 7.2. Fix a type t. We need to show that in the induced publicly IC mech-

anism, type t accepts on the event {x ∈ B} for every Borel subset B ⊆ [t, t], where x is the

public signal produced by the mechanism. That is, we need to show that

∫

f(s, t)u(s)κ(s, B)µ(ds) > 0.

It is sufficient to prove the assertion for sets B of the form B = {x : t′′ < x 6 t′} for some

t 6 t′′ < t′ 6 t and for the set B = {t} since these sets generate the Borel sets. Indeed, for
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B = {x : t′′ < x 6 t′}, it holds that

∫

f(s, t)u(s)κ(s, B)µ(ds) = U(t′, t)− U(t′′, t) > 0,

where the inequality follows from (i) downward incentive-compatibility when t = t′ and (ii)

Lemma 3.4, which extends to t > t′. The case B = {t} follows by a similar argument

from (5).

7.2 Proof of Proposition 4.1

We first note that, under our assumption that type L rejects without additional information,

both IC constraints in (6) bind. Indeed, for type H this holds trivially in the pooling case;

in the separating case, if the constraint is not binding, then slightly increasing πL would

increase Sender’s payoff without violating either type’s IC constraint. For type L, we know

from Theorem 3.1 that u(πL) 6 0. If the IC constraint for type L is not binding, then

making πL slightly smaller will increase Sender’s payoff without violating either type’s IC

constraint.

Since both IC constraints are binding and since πH = 1, the variables in Sender’s prob-

lem (6) are determined by a single variable. If πL = y for some ζ 6 y 6 1, then (i) πL = ℓL(y)

where ℓL : [ζ, 1]→ [0, ζ ] is given by

∫ y

ℓL(y)

f(s, L)u(s) ds = 0;

and (ii) πH = ℓH(y) where ℓL : [ζ, 1]→ [0, ζ ] is given by

∫ ℓL(y)

ℓH (y)

+

∫ 1

y

f(s,H)u(s) ds = 0.

By the implicit function theorem, ℓL and ℓH are differentiable and their respective derivatives

are given by:

ℓ′L(y) =
u(y)

u(ℓL(y))

f(y, L)

f(ℓL(y), L)
, ℓ′H(y) =

u(y)

−u(ℓH(y))

f(y,H)f(ℓL(y), L)− f(y, L)f(ℓL(y), H)

f(ℓH(y), H)f(ℓL(y), L)
.

It is easy to see that ℓL is monotone-decreasing and that the i.m.l. ratio assumption implies

that ℓH is monotone-increasing.
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In terms of the variable y, Sender’s payoff is given by

R(y) =

∫ y

ℓL(y)

f(s, L) ds+

∫ 1

ℓH(y)

f(s,H) ds.

Thus, Sender’s payoff is differentiable. Substituting ℓ′L(y) and ℓ′H(y) into R′(y), we obtain

that R′(y) is positive if and only if:

f(y,H)

f(y, L)
−

f(ℓL(y), H)

f(ℓL(y), L)
< −u(ℓH(y))

(

1

u(y)
−

1

u(ℓL(y))

)

.

Since ℓ′L(y) 6 0 6 ℓ′H(y), the left-hand side increases in y due to the i.m.l. ratio assumption

and the right-hand side decreases in y since u(s) increases in s. Therefore, R′(y) is positive

if and only if y is small enough. Therefore, pooling is optimal if and only if Sender’s payoff

achieves maximum at y = 1, which is equivalent to R′(1) > 0. That is, the inequality above

holds when y equals 1.

7.3 Proof of Propositions 5.1 and 5.2

Proof. We let G(π(t)) denote the integrand in (11). (To simplify exposition, the dependence

of the integrand on t is omitted.) G(π(t)) is a cubic function in π(t):

G(π(t)) := b1(t)π(t)
3 + b2(t)π(t)

2 + b3(t)π(t),

where

b1(t) :=
2
(

2φt−φ

2φt−φ+4
− log

(

φ+4
2φt−φ+4

))

3η
, b2(t) :=

2ηφt− ηφ+ 1

η(2φt− φ+ 4)
, b3(t) :=

2

φ(2t− 1) + 4
.

The first-order condition is G′(π(t)) = 3b1(t)π(t)
2 + 2b2(t)π(t) + b3(t). It can be readily

verified that b3(t) > 0 for all t ∈ [0, 1]. Moreover, b1(t) strictly increases in t; b1(0) < 0; and

b1(1) > 0. We let t̃ ∈ (0, 1) be the value which solves b1(t) = 0.

When t > t̃, G′(π(t)) is strictly positive for any π(t) > 0, so G(π(t)) is maximized at

π(t) = 1. When t < t̃, the equation G′(π(t)) = 0 has a unique positive root since b1(t) < 0

and b3(t) > 0. This root is given by π∗(t) in (12). It can be easily verified that π∗(t) is

monotone-increasing for t ∈
[

0, t̃
]

and goes to infinity as t approaches t̃.

If π∗(t) is above 1 at t = 0, then G(π(t)) is maximized at π(t) = 1 for every t. Thus,
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Sender pools all types when the following inequality holds:

π∗(0) > 1←→ η >
(φ− 4) log

(

φ+4
4−φ

)

φ− 1
− 1.

The right-hand side is monotone-increasing in φ, as desired.

If π∗(t) is below 1 at t = 0, there is a critical t̂ which solves π(t) = 1. Thus, G(π(t)) is

maximized at π∗(t) for t 6 t̂ and at 1 for t > t̂.

Lemma 7.3. Suppose that φ > Φ(η). Both π(t) and π(t) increase pointwise in η. Thus,

there exists η̄(φ) such that the constraint π(t) > −1 does not bind if and only if η > η̄(φ).

Proof of Lemma 7.3. When t equals 1/2, the value of b1(t), as defined in the proof of Propo-

sition 5.1, is
2 log( 4

φ+4)
3η

, which is negative given that η > 0 and φ > 0. When t equals 1/2,

the value of (12) equals:
2η

√

16η log
(

φ+4
4

)

+ 1− 1
,

which is greater than 1. This implies that t̂ < 1/2. For the rest of the proof, we focus on

the domain that t ∈ [0, 1/2).

We first show that π(t) increases in η by showing that 1/π(t) decreases in η. The deriva-

tive of 1/π(t) w.r.t. η is negative if and only if

η(φ− 2φt) + 2η(φ(2t− 1) + 4) log

(

φ+ 4

2φt− φ+ 4

)

+ 1

>

√

(−2ηφt+ ηφ+ 1)2 + 4η(2φt− φ+ 4) log

(

φ+ 4

2φt− φ+ 4

)

.

The left-hand side is concave in t, and it decreases in t at t = 0. Hence, the left-hand side

decreases in t. Moreover, it is positive when t = 1/2, so the left-hand side is positive. Taking

the power of both sides, we show that the inequality above holds.

We next show that π(0) increases in η. We solve for π(0) based on the condition that

type 0’s expected utility is zero:

π(0) =

2η

(

ηφ− 3

√

(ηφ+ 1)2 − 4η(φ− 4) log
(

φ+4
4−φ

)

+ 3

)

3

(

ηφ+

√

(ηφ+ 1)2 − 4η(φ− 4) log
(

φ+4
4−φ

)

− 1

)3 .
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It is easy to show that this term increases in η.

Lastly, we want to show that π(t) increases in η. To do so, we write π(t) (as well as π(t))

as a function of t and η:

π(t, η) =
6
∫ t

0
2
3
φπ(τ, η)3 dτ + π(t, η)2(φ(2− 4t)π(t, η)− 3)

6η
.

We have shown above that π(0,1)(0, η) is positive. Next, we show that π(1,1)(t, η) is positive,

that is, π(0,1)(t, η) increases in t. This completes the proof that π(0,1)(t, η) is positive, so

π(t, η) increases in η.

We let x(t, η) denote the square root term in π(t):

x(t, η) :=

√

(2ηφ(1− 2t) + 1)2 + 8η(φ(1− 2t)− 4) log

(

2φt− φ+ 4

φ+ 4

)

.

It can be easily verified that x(t, η)− ηφ(2t− 1)− 1 > 0. Given this condition and the fact

that t ∈ (0, 1/2), φ ∈ (0, 1), and η > 0, it follows that the derivative π(1,1)(t, η) is positive if

a1x(t, η)
3 + a2x(t, η)

2 + a3x(t, η) + a4 > 0, (20)

where

a1 = η(φ(6t− 3)− 8)− 3,

a2 = (η(φ− 2φt) + 1)(η(7φ(2t− 1) + 24) + 1),

a3 = −(5ηφ(1− 2t) + 3)(η(φ(2t− 1)(η(φ(2t− 1) + 8)− 4)− 24)− 1),

a4 = −(ηφ(2t− 1)− 1)(ηφ(2t− 1) + 1)(η(φ(2t− 1)(η(φ(2t− 1) + 8)− 4)− 24)− 1).

It is easy to show that a2 > 0 and that x(t, η) > 1. Moreover, the cubic inequality (20) is

satisfied when x(t, η) = 1. We next rewrite the left-hand side of (20) as a quadratic function

of x(t, η):

a2x(t, η)
2 + (a1x(t, η)

2 + a3)x(t, η) + a4.

If we can show that (a1x(t, η)
2 + a3) is positive, then the quadratic function increases in

x(t, η) for any x(t, η) > 1. Given that the quadratic function is positive when x(t, η) = 1,

the inequality (20) is satisfied. Next, we prove that (a1x(t, η)
2 + a3) is positive.
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Substituting x(t, η) into (a1x(t, η)
2 + a3), we find that this term is positive if

−
2(ηφ(2t− 1)(ηφ(2t− 1)− 4) + 2)

η(φ(6t− 3)− 8)− 3
+ log

(

2φt− φ+ 4

φ+ 4

)

> 0. (21)

It is easy to verify that the left-hand side of (21) is convex in η. The inequality (21) holds

when η equals zero. We are interested in the parameter region when π(t) < 1. For fixed φ

and t, π(t) is smaller than 1 if

η < η :=
(φ(2t− 1) + 4) log

(

φ+4
2φt−φ+4

)

φ(2t− 1) + 1
− 1.

When we substitute η = η into (21), the inequality is satisfied for any t ∈ (0, 1/2) and

φ ∈ (0, 1).

The left-hand side of (21) increases in η if and only if

φ2(1− 2t)2(φ(6t− 3)− 8)η2 − 6φ2(1− 2t)2η + 2(φ(6t− 3) + 8) < 0.

The quadratic function on the left-hand side is concave and admits one positive root and

one negative root. The positive root is given by

η̃ :=

√

128− 9φ2(1− 2t)2 + φ(6t− 3)

φ(2t− 1)(φ(6t− 3)− 8)
.

Given that η > 0, we obtain that the left-hand side of (21) decreases in η when η < η̃, and

increases in η when η > η̃. We now have to discuss two cases, depending on whether η̃ is

above or below η:

1. If η̃ > η, the left-hand side of (21) decreases in η for any η ∈ (0, η). We have shown

that the left-hand side of (21) is positive at η = 0 and η = η. Hence, the left-hand side

of (21) is positive for any η ∈ (0, η).

2. If η̃ ∈ (0, η), then the minimum of the left-hand side of (21) is achieved when η = η̃.

We need to show that (21) holds when η = η̃. The condition η̃ < η holds only if

φ > 11/20 and t < 1/4. When we substitute η = η̃ into (21), the inequality (21) is

satisfied when we restrict attention to the parameter region φ > 11/20 and t < 1/4.

By combining the two cases above, we have shown that (21) holds.
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